学分高考 教育头条

深圳大数据开发工程师培训推荐去哪家

发布时间: 2022-05-01 11:54:01

IT培训选达内,19年专业IT培训机构,美国上市集团。开设IT培训班Java、python、大数据、linux、UI、会计等IT培训,泛IT培训和非IT培训共2课程、室内设计师、PHP工程师、平面++工程师、SEM竞价师、SEO优化师、社会化媒体运营师、电商运营师等课程为一体的IT培训机构。

深圳大数据开发工程师培训推荐去哪家

相信大家经常听到“大数据”这个词,仿佛带了一个“大”字我们就难以理解其中的含义。都说当今世界是大数据的时代,只有掌控大数据才能赢得这场各行各业之间的战争。其实简单而言,我们现在所知的电商,诸如淘宝、京东等无不靠着大数据支撑。

达内大数据云计算辅导班优势

数据云计算课程体系

内容较全,技术深,涉及JavaEE架构级技术,分布式高并发技术,云计算架构技术,云计算技术,云计算架构技术等。

2提供“云计算云主机”试验环境

提供真实的大数据云计算开发部署环境,学员可以拥有几十台主机节点以完成开发部署试验。

3O2O双模式教学体验

达内强大的TMOOC+TTS8.0在线教学平台,为学员提供线下学习,线上辅助的双模式教学体验。

你真的了解大数据吗?

你真的了解大数据吗?很多小伙伴想要学习大数据技术开发,但是大数据感觉摸不到,有点不可靠,大数据工程师是做什么的呢?是如何来工作的呢?

数据是如何采集的

大数据分析的步就是对数据的收集和管理,我们需要先来了解一下数据是如何产生的?又是被如何捕获的?那些看似杂乱的数据真的能被分析吗?

主动的数据产生与用户行为数据收集

主动产生的数据比较好理解,在我们使用互联网或者各种应用的过程中,通过填写提交表单就会产生数据。类似的,我们在线下环境中,比如银行开卡、纸质表格的填写,较终都会变成电子数据流入到系统中。通常,我们会将这一类行为归为用户注册,通常会是产生数据的起点。(当然,有些时候我们分析的数据也可能并不关心用户自身的信息。)除此之外,通过使用一些平台的功能,用户会上传和发布各种类型的数据,如文本类信息、音频、视频等,这都是数据产生和积累的方式。

对于用户行为数据更多的来自于应用埋点和捕获,因为用户使用应用必须通过鼠标点击或者手指触碰来和用户界面进行交互。以网页应用(网站)为例,对于鼠标的所有行为基本上都可以通过事件监听的方式来捕获,鼠标在某个区域停留的时间、是否进行点击,我们甚至可以根据用户的行为数据刻画出整个页面的热力图。

在不同的应用场景中,我们可以对行为类型、功能模块、用户信息等维度进一步的划分,做更加深入的分析。

结构化数据与非结构化数据

较常见的结构化数据就是存储在关系型数据库中的数据,如MySQL、Oracle等,这些数据都具备一个特点,就是十分规范。因为关系型数据库属于写时模式,也就是说不符合预先设定的数据类型和规范的数据不会通过校验,存不到数据库中。除数据库中的数据以外,那些能直接导入到数据库中的数据文件我们也可以把它们视为结构化的数据,如:CSV格式。这些数据通常需要具备统一的列分隔符、行分隔符,统一的日期格式等等。

对于非机构化的数据指的就是除结构化数据以外的另类数据,通常没有预期的数据机构,存储在非关系型数据库中,如:Redis、MongoDB,使用NoSQL来进行操作。也可能是非文本类型的数据,需要特别对应的手段来处理和分析。

大数据真的能预测吗

问起大数据到底能不能预测,倒不如来说一说大数据是如何预测的。如果结合人工智能领域来说的话就比较复杂了,就说比较简单的场景:用统计分析的方法进行辅助决策,或者用经典数据挖掘算法进行模型的训练。既然是预测,那就有可能准确,也有可能不准确,分析者需要做的就是合理的使用各种数据维度,结合相应的算法或统计分析方法,去训练或拟合出一个潜在的规律。这个过程就好比,给了我们三个点(1,1)、(2,2)、(3,3),我们可以大概猜到它的函数式有可能为y=x一样。当然,实际的分析过程要比这复杂的多得多,毕竟有很多函数式都可以满足这三个点,但到底哪一个是我想要的规律呢?这就需要理论知识与行业经验并重,不断的打磨和优化才能够得到一个可靠的模型。

但是我们可以明确的一点是,大数据的预测也好、推荐也好,都是基于算法的,是数学的,也是科学的,但并不会的准确。

免责声明:内容来源于公开网络,若涉及侵权联系尽快删除!

温馨提示:
本文【深圳大数据开发工程师培训推荐去哪家】由作者教培参考提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号